INTERACTION OF THE RADIATION FROM A
FLASH TUBE WITH THE COOLING LIQUID

M. I. Tribel'skii UDC 536.3

An analytical solution is found for the nonlinear hydrodynamic problem describing the reac~
tion of the cooling liquid which partially absorbs radiation from a flash tube, in the case of
a single flash of the latter. A method of reducing the pressure in the liquid, in order to in-
crease the limiting load of the flash tube, is described.

Due to the limiting load and life of flash tubes operating in a cooling liquid which absorbs the part
of their radiation which is harmful for the active element of a laser, in comparison with the same param-
eters for flash tubes operating in 2 medium which does not possess filtering properties, the possibility
arises of calculating the temperature and pressure developed in the liquid by the action of the radiation
from the flash tube. A calculation of this nature was carried out within the framework of linear acoustics
in [1]. In this present paper, the results are obtained in linear approximation with respect to density and
in nonlinear approximation with respect to temperature of the liquid, which expands significantly their
range of applicability in comparison with [1]. '

The liquid fills the space between two coaxial cylinders — the flash tube vessel and the reflector.
We shall assume that the flash tube and reflector have an infinite length along the axis of axial symmetry.
Then, in view of the symmetry of the problem, all quantities will depend only on the distance to the axis
of the cylinders and tl}e time (r and t, respectively).

We shall assume that the relation
_Ry—R, (1)

u

>

is satisfied. Since the pressure in the liquid is smoothed with the velocity of sound, condition (1) shows
that the pressure in the laser is a function only of time.

As will be seen later, without violating generality, it can be assumed that the coolant is defined in-
dependently of the frequency by the absorption coefficient over a certain range of frequencies of the inci-
dent radiation, and in the remaining spectral region it is absolutely transparent.

Then the processes taking place in the liquid are described by the following equations:

¢ aT aT dp P
c —_——— T} = — .
! q=—wuyT LS, ' (2)
v, §) = —KS,

1PO=p0 T),
where p(p, T) is the equation of state (assumed to be known),

The first equation of system (2) is a corisequence of the law of conservation of energy — (V, q)dt
=pde — (p/p?)dp, and the hydrodynamic flows in g can be neglected in view of condition (1).

System (2), together with the conditions T (0, r) =T\, 0{0, 1) = pylt = 0 corresponds to the start of
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the flash), S¢, Ry} = w(t), the conditions of thermal exéhange at the boundary, and the condition of con-
servation of mass [ pdV = const defines completely the state of the liquid.*

vV
Because the temperature of the liquid is much less than the value at which thermal ionization of the
molecules becomes significant, the coefficient K can be assumed to be independent of the temperature.

But since the principal mechanism of radiation absorption is the absorption of a quantum by an indi-
vidual molecule, we obtain that K = kp, where k is constant for a given coolant quantity.

We shall suppose that o = py + py; logl < py, and we shall take into account only the first nonvanish-
ing terms in the expansion with respect to py.

With these assumptions, the third equation of system (2) is integrated at once and we obtain

~w<t>—-exp{ ool —R)}=w (g0 3)
Because K = kp, and the liquid expands when heated the expression for S is stable relative to small
changes of p, andtherefore, the substitution of ko by ko, cannot introduce a large error.{

Since the thermal conductivity of the liquid is small, during the entire flash inVv VT « 8, i.e.,, g8
(@1l numerical estimates will be made at the end of the paper).

The equation of state of the liquid, applicable for its change of temperature and density over a wide
range, is considered in [2]. However, for the analysis conducted below, it is not required to know the
specific form of the function p(c, T).

With the stated accuracy of the quantity cp, o and 3 are functions only of temperature, i.e., cplo,
T) = cplog, T) = cp(T), ete.

Then, by using the condition for conservation of mass, it is easy to obtain that

dp " oT
LB av— a2 gy =
L Va5 -av=o | @
v v
Substituting dp/dt, found from Eq. (4) in the first equation of system (2), we obtain, finally,
aT . Ta ()
e, m) 2L g‘ﬁ(T)dV——————a( L a2 av —keywe (8 mav. (5)
ot | 0 ot '
: v .

Before solving Eq. (5), we note that the main part of the radiation is absorbed in a thin layer N(kpo)“1
close to the flash tube. Therefore, the temperature in this layer increases considerably. In the remain-

ing volume, the temperature changes only slightly because of the almost adiabatic compression of the cool-
ant,

Moreover, by using the thermodynamic identities, it can be shown that

From all that has been said, it is clear that the second term in the left-hand side of Eq. (5) in the
region of absorption is much less than the first term. Discarding it, we obtain the equation defmmg T in
the regionr — Ry < (kpgy)~t.

t
¢y (0)dd = kg () ‘\" w (E) dE. 6)

:)""7"]

_ In the region r — Ry > (koy)~!, the inequality T — T, < T, is satisfied, andtherefore,we can put with
the stated accuracy that cp(T) o cp(TO) = cpps @ (T) = a(Ty) = ay and B(T) = 3(Ty) = 3;. Denoting the

volume of the absorption layer by V; 1/50‘f7 B(T)YAV by f(t) and 1/5, \f] @ (T)(@T/0t)dV by Ft) [T(r, t),
c c

*In view of the translational symmetry along the axis of the eylinders, here and in future we shall under-
stand by V, the volume arriving per unit length of the axis of axial symmetry.

TIf, over the range of frequencies being filtered, the function k(w) is significant (w is the frequency of the
radiation), then the expression of the type of Eq. (3) is valid only for the differential 8. In order to obtain
the total energy flow density, it must be integrated with respect to frequency. In the remainder of the
scheme of calculation, it remains without change.

183



which is the solution of Eq. (6), is substituted in the integrals], we obtain that Eq. (5) in the regionr — R,
> (kpo)"1, in linear approximation with respect to T — T, has the form*

aT : 2
BoCpo—— [V - F ()] _ %o 7p t) — _TO.C‘_‘L g‘ﬂ‘_ dv =0. 7
ot Do P J ot
V—-Ve L
Integrating Eq. (7) over the volume V — V,, we obtain the d1fferent1a1 equatxon which defines [ TdV.
V"Vc

Expanding its solution in Taylor series and limiting it to the first nontrivial term, we obtain that

f
j Tdvﬁm{]_f_ ( aBoF (§) d
BV F@I—TVa ]

V—V¢

Returning to Eq. (4), we obtain, finally,
- f
L F () T,V - |
p:pf‘sdg _ {1—}— 0. . (8)
’ V1@ PBetrolV -+ F & — TV |

Expression (8) can be simplified somewhat, if we take into account that, generally,

Toa(,
Ooﬁocpo

& land max {f(H K V

[the latter is because B(T) varies within finite limits in a small region V.]. In this case
t

P2 py ‘;,—"fF(g) dE, ‘ (9)
0
Here Y= ¥(Ty). Knowing the function p(t), it is not difficult to determine T (r, t) and py(r, t), We have
T—T,1T,%P=P) (10)
Pofpo

Here T; is the solution of Eq. (6), :
pr=B (M polp &) — P (T, Pl

As F(t) is independent of V, then the excess pressure originating in the coolant is inversely propor-
tional to the volume of liquid.

If cp and o depend weakly on T, then it can be assumed that ep = cpg and @ = a,also in the region
V. Then expression (9) gives a result which coincides with that obtained in [1] for the corresponding
case,

In the calculation given, boiling of the coolant has not been taken into account. This is valid if tran-
sition to the final state is achieved by a path which does not intersect the phase equilibrium curve. If the
liquid starts to boil and boiling takes place far from the critical point and as o4 > pn, but the total volume
is fixed, then boiling must lead to a significant increase of pressure. The pressure can be determined
from the formula

Ap~u2 ”’(Po“pn)
I—n
to an order of magnitude of the pressure' rise, where n is the ratio of the volume occupied by the gas phase
to the total volume. This type of situation frequently is achieved in an experiment [3].

A quantitative computation of the effect of boiling on the distribution of pressure, density, and tem-
perature in the liquid requires separate consideration and falls outside the scope of this present paper.

1t should be noted that formulas (8)-(10) remain valid, even if ipql ~ p, in the region V. Actually,
in this region the limitation of lg{| << p, for a given flash energy is the limitation on the quantity K, while
for the magnitude of the pressure only the total quantity of absorbed energy is important, and therefore, in
zero approximation p generally is independent of K. In its turn, Eq. (6), which defines T in the region Vg,

* From the existence of the region r — Ry > (koy)™!, it follows that V > V. This inequality was used in
the derivation of Eq. (7). '
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shows that in the stated region the liquid can be assumed to be heated up isobarically. However, the latter
is conditioned by the properties of the liquid and not by the smallness of p; in comparison with o,.

Let us carry out numerical estimates, choosing an aqueous solution of a dye [4] as the coolant, and
assuming that o, B, and cp are independent of the temperature. We have (see, for example [5, 8]) Cp
=1 cal/g-deg; o =1g’cm? n=06Wm-deg; ay=2.1" 1074 liter/deg; B, 4.9- 107° liter/atm,

The condition ipy! < o4 applies a constraint on the flash energy density W < (pocpo/ ayKn), where
is the emission efficiency of the flash tube in the filtered part of the spectrum (sually n ~ 0.1},

Choosing K = 100 em~!, we obtain W « 2:10? J/em® and T < 5-10%C

_al o ay ~0 1
Poﬁocpo poﬂo‘:po '

In order to avoid boiling, the parameters of the system must be chosen so that the inequality

R —R}

2] ,wy_‘g_To

Fo (11
Bo Pe—Po

K<y,
is satisfied.

In the case considered, condition (11) is satisfied when Ry, — Ry ~ 0.1 cm (R; » Ry — Ry). For this
gap thickness and W = 30 J/cm?, we obtain from formula (9) that p — py = 30 atm, A commercial-type
flash tube withstands this pressure without distortion [7]. Moreover, it exerts a compensating effect on
the internal pressure in the flash tube. This should increase the limiting loads and the life of flash tubes
in accordance with the results of [1].

We approximate the function w(t) by the relation wyexp (—t/7) (w, = const), With this approximation,
the temperature of the liquid at the start of the flash increases more rapidly than in actual cases, for
which w(0) = 0, A typical value of r for flash tubes is 5-107* sec [8]. For this value of T we obtain that
the flow of energy in the liguid, due to thermal conductivity, is equal to the flow of radiant energy during
~57. Therefore, it is permissible to neglect the thermal. conductivity of the liquid in calculations, during
the entire flash,

NOTATION

T is the duration of flash;

u is the velocity of sound in the liquid;

Ry is the external radius of flash-tube container;

R, is the internal radius of reflector;

T is the temperature of liquid;

P is the pressure of liquid;

o is the density of liquid;

q is the energy flux density;

s is the Poynting's vector in the filtered range of frequencies;

Cy, Cp are the specific heats;

£ is the specific internal energy;

& is the coefficient of volume expansion,

3 is the isothermal compressibility;

" is the coefficient of thermal conductivity;
on is the density of gas phase;

Tg is the critical temperature of liquid;

Pe is the critical pressure;

w is the energy density of flash;

Y= cp/ Cy
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